SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1. The product formed in the reaction \(\text{OH} + \text{SOCl}_2 \rightarrow \) is-

 (A) \(\text{Cl}_2 \) \(\text{H} \)
 (B) \(\text{Cl}_2 \) \(\text{H} \)
 (C) \(\text{Cl}_2 \) \(\text{O} \)
 (D) \(\text{Cl}_2 \) \(\text{SOH} \)

2. The reaction proceeds by the mechanism

 (A) \(\text{S}_\text{N}^1 \)
 (B) \(\text{S}_\text{N}^2 \)
 (C) \(\text{S}_\text{C}^\text{I} \)
 (D) \(\text{S}_\text{E}^2 \)

3. 1, 3- Dibromopropane reacts with metallic zinc to form

 (A) propene
 (B) cyclopropane
 (C) propane
 (D) hexane

4. Consider the following reaction sequence,

 \(\text{CH}_3 \text{C} \equiv \text{CH} \xrightarrow{\text{aq.HSO}_4^-,\text{HgSO}_4} \text{A} \xrightarrow{\text{PCl}_5,\text{Heat}} \text{B} \)

 The products (A) and (B) are, respectively,

 (A) \(\text{CH}_3\text{COCH}_3 \) and \(\text{CH}_3\text{ClC}_2\text{H}_3 \)
 (B) \(\text{CH}_3\text{CH}_2\text{CHO} \) and \(\text{CH}_3\text{CH}_2\text{CHCl}_2 \)
 (C) \(\text{CH}_3\text{CHOHCH}_3 \) and \(\text{CH}_3\text{CHClCH}_3 \)
 (D) \(\text{CH}_3\text{CH}_2\text{CH}_2\text{OH} \) and \(\text{CH}_3\text{CH}_2\text{CH}_2\text{Cl} \)

5. Which of the following has highest dipole moment:

 (A) \(\text{CH}_3\text{Cl} \)
 (B) \(\text{CH}_3\text{F} \)
 (C) \(\text{CH}_3\text{Br} \)
 (D) \(\text{CH}_3\text{I} \)

6. In \(\text{S}_\text{N}^1 \) the first step involves the formation of

 (A) free radical
 (B) carbanion
 (C) cabocation
 (D) final product

7. To form alkane isonitrile, alkyl halide is reacted with:

 (A) \(\text{KCN} \)
 (B) \(\text{AgCN} \)
 (C) \(\text{HCN} \)
 (D) \(\text{NH}_4\text{CN} \)

8. Which one of the following compounds most readily undergoes substitution by \(\text{S}_\text{N}^2 \) mechanism ?

 (A) \(\text{H}_3\text{C} \) \(\text{Cl} \)
 (B) \(\text{H}_3\text{C} \) \(\text{Cl} \)
 (C) \(\text{H}_3\text{C} \) \(\text{Cl} \) \(\text{CH}_3 \)
 (D) \(\text{H}_3\text{C} \) \(\text{Cl} \) \(\text{CH}_3 \)

9. Sec. Butyl chloride undergo alkaline hydrolysis in the polar solvent by

 (A) \(\text{S}_\text{N}^2 \)
 (B) \(\text{S}_\text{N}^1 \)
 (C) \(\text{S}_\text{N}^1 \) and \(\text{S}_\text{N}^2 \)
 (D) none of these
10. Grignard reagent can be prepared by

(A) \(\text{CH}_3\text{CH}_2\text{Cl} + \text{Mg} \xrightarrow{\text{dry ether}} \text{CH}_3\text{CH}_2\text{MgCl} \)

(B) \(\text{CH}_3\text{CH} = \text{CH}_2 + \text{Mg} \xrightarrow{\text{dry ether}} \text{CH}_3\text{C} = \text{CHMgCl} \)

(C) \(\text{CH}_2 = \text{C} = \text{OH} + \text{Mg} \xrightarrow{\text{dry ether}} \text{CH}_2 = \text{C} = \text{OMgCl} \)

(D) All of them

11. Most stable carbocation formed from \((\text{CH}_3)_3\text{C–Br}, (\text{C}_6\text{H}_5)_3\text{CBr}, (\text{C}_6\text{H}_5)_2\text{CHBr} \) and \(\text{C}_6\text{H}_5\text{CH}_2\text{Br} \) would be

(A) \((\text{C}_6\text{H}_5)_3\text{C} \)

(B) \((\text{CH}_3)_3\text{C} \)

(C) \((\text{C}_6\text{H}_5)_3\text{C} \)

(D) \((\text{C}_6\text{H}_5)_2\text{CH} \)

12. For the reaction

\[\text{CH}_3\text{CH(X)CH}_2\text{CH}_3 \xrightarrow{\text{alc. KOH}} \text{CH}_3\text{CH} = \text{CH} = \text{CH}_3 \]

(A) \(\text{CH}_3\text{CH} = \text{CH–CH}_3 \) predominates

(B) \(\text{CH}_2 = \text{CH–CH}_2–\text{CH}_3 \) predominates

(C) Both are formed in equal amounts

(D) The product ratio depends on the halogen

13. The products of reaction of alcoholic silver nitrite with ethyl bromide are

(A) Ethane

(B) Ethene

(C) Ethyl alcohol

(D) Nitro ethane

14. The reaction \(\text{CH}_3\text{Br} + \text{OH}^{-} \rightarrow \text{CH}_3\text{OH} + \text{Br}^{-} \) obeys the mechanism

(A) \(S_N^1 \)

(B) \(S_N^2 \)

(C) \(E_1 \)

(D) \(E_2 \)

15. Ethylidene chloride can be prepared by the reaction of HCl and

(A) Ethane

(B) Ethylene

(C) Acetylene

(D) Ethylene glycol

16. 1-phenyl-2-chloropropane on treating with alc. KOH gives mainly

(A) 1-phenylpropene

(B) 2-phenylpropene

(C) 1-phenylpropane-2-ol

(D) 1-phenylpropan-1-ol

17. Grignard reagent is obtained when magnesium is treated with

(A) Alkyl halide in presence of alcohol

(B) Alkyl halide in presence of phenol

(C) Alkyl halide in presence of dry ether

(D) Alkyl halide in presence of alcoholated ether

18. Ethylene reacts with bromine to form -

(A) Chloroethane

(B) Ethylene dibromide

(C) Cyclohexane

(D) 1-bromo propane

19. \(\text{C}_2\text{H}_4 \xrightarrow{\text{Br}_2} X \xrightarrow{\text{KCN}} Y \); \(Y \) is

(A) \(\text{CH}_3\text{CH}_2\text{CN} \)

(B) \(\text{NC}–\text{CH}_2–\text{CH}_2–\text{CN} \)

(C) \(\text{Br}–\text{CH}_2–\text{CH}_2\text{CN} \)

(D) \(\text{Br}–\text{CH} = \text{CHCN} \)

20. Reactivity order of halides for dehydrohalogenation is

(A) \(\text{R} – \text{F} > \text{R} – \text{Cl} > \text{R} – \text{Br} > \text{R} – \text{I} \)

(B) \(\text{R} – \text{I} > \text{R} – \text{Br} > \text{R} – \text{Cl} > \text{R} – \text{F} \)

(C) \(\text{R} – \text{I} > \text{R} – \text{Cl} > \text{R} – \text{Br} > \text{R} – \text{F} \)

(D) \(\text{R} – \text{F} > \text{R} – \text{I} > \text{R} – \text{Br} > \text{R} – \text{Cl} \)

21. Which of the following is least reactive in a nucleophilic substitution reaction

(A) \(\text{CH}_2 = \text{CHCl} \)

(B) \(\text{CH}_3\text{CH}_2\text{Cl} \)

(C) \(\text{CH}_2 = \text{CHCH}_2\text{Cl} \)

(D) \(\text{(CH}_3)_2\text{C–Cl} \)
22. The correct reactivity order of alcohols towards H–X will be

(I) \(\text{CH}_2=\text{CH}-\text{OH} \)
(II) \(\text{HC}_3\text{CH}_2\text{OH} \)
(III) \(\text{CH}_3-\text{CH}_2-\text{OH} \)
(IV) \(\text{CH}_3-\text{CH}-\text{CH}_3\text{OH} \)

(A) II > I > III > IV
(B) IV > III > II > I
(C) II > IV > I > III
(D) II > IV > III > I

23. Identify 'Z' in the following reaction series, \(\text{CH}_3\text{CH}_2\text{CH}_2\text{Br} \stackrel{\text{aq. NaOH}}{\longrightarrow} (X) \stackrel{\text{Al}_2\text{O}_3, \text{Heat}}{\longrightarrow} (Y) \stackrel{\text{HCl}}{\longrightarrow} (Z) : \)

(A) Mixture of \(\text{CH}_3-\text{CH}-\text{CH}_2-\text{Cl} \) and \(\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{OH} \)
(B) \(\text{CH}_3-\text{CH}-\text{CH}_2-\text{Cl} \)
(C) \(\text{CH}_3-\text{CH}-\text{CH}_2-\text{Cl} \)
(D) \(\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{Cl} \)

24. For the reaction, \(\text{C}_2\text{H}_5\text{OH} + \text{HX} \stackrel{\text{ZnX}_2}{\longrightarrow} \text{C}_2\text{H}_5\text{X} \), the order of reactivity is

(A) HI > HCl > HBr
(B) HI > HBr > HCl
(C) HCl > HBr > HI
(D) HBr > HI > HCl

25. Ethyl alcohol reacts at a faster rate with HI than with HCl in forming the corresponding ethyl halides under identical conditions mainly because -

(A) HI, being a stronger acid, protonates ethyl alcohol at oxygen much better and helps substitution
(B) the bond length in HI is much shorter than that in HCl
(C) \(\text{I}^- \) is a much better leaving group
(D) \(\text{I}^- \) is a much better nucleophile than \(\text{Cl}^- \)

<table>
<thead>
<tr>
<th>CHECK YOUR GRASP</th>
<th>ANSWER KEY</th>
<th>EXERCISE -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Que.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ans.</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>Que.</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Ans.</td>
<td>A</td>
<td>C</td>
</tr>
</tbody>
</table>
SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THEN ONE CORRECT ANSWERS)

1. Which of the following does/do produce a white precipitate of AgCl on warming with alcoholic silver nitrate?
 (A) Allyl chloride (B) t-Butyl chloride (C) Benzyl chloride (D) Vinyl chloride

2. What is the order of reactivity of the following compounds towards nucleophilic substitution?

 ![Compounds](compounds.png)

 (A) I < II < III < IV (B) IV < II < III < I (C) IV < I < II < III (D) IV < II < I < III

3. The order of decreasing nucleophilicity of the following is

 (A) H₂O > OH⁻ > CH₃COO⁻ > CH₃O⁻ (B) CH₃O⁻ > OH⁻ > CH₃COO⁻ > H₂O
 (C) CH₃COO⁻ > CH₃O⁻ > OH⁻ > H₂O (D) HO⁻ > CH₃O⁻ > CH₃COO⁻ > H₂O

4. The order of decreasing S₉¹ reactivities of the halides

 CH₃CH₂CH₂Cl CH₂=CHCHClCH₃ CH₃CH₂CHClCH₃
 I II III

 (A) I > II > III (B) II > I > III (C) II > III > I (D) III > II > I

5. Consider the following anions.

 ![Anions](anions.png)

 When attached to sp³-hybridized carbon, their leaving group ability in nucleophilic substitution reactions decreases in the order

 (A) I > II > III > IV (B) I > II > IV > III (C) IV > I > II > III (D) IV > III > II > I

6. The basicity of RO⁻, HO⁻, RCOO⁻, ROH, and H₂O are of the order -

 (A) HO⁻ > RO⁻ > H₂O > ROH > RCOO⁻ (B) RO⁻ > HO⁻ > RCOO⁻ > ROH > H₂O
 (C) H₂O > ROH > RCOO⁻ > HO⁻ > RO⁻ (D) ROH > H₂O > HO⁻ > RCOO⁻ > RO⁻

7. Which of the following are aprotic solvents :

 (A) DMSO (B) DMF (C) H₂O (D) CH₃COOH

8. Which is/are true statements (s):

 (A) Protonation increases electrophilic nature of carbonyl group
 (B) CF₃SO₃⁻ is better leaving group than CH₃SO₃⁻
 (C) Benzyl carbonium ion is stabilised by resonance
 (D) CCl₃CH<OH is stable due to H-Bonding
9. \[
\text{Ph-C-OH} \xrightarrow{\text{SOCl}_2\text{ in C}_6\text{H}_5\text{N}} \text{H}
\]

Which statement is true for the above reaction?
(A) Retention of configuration
(B) Inversion of configuration
(C) Inversion and Retention both
(D) None

10. Which of the following undergoes hydrolysis most easily
(A)
(B)
(C)
(D)

11. A compound 'A' formula of C\textsubscript{3}H\textsubscript{5}Cl on reaction with alkali can give 'B' of formula C\textsubscript{3}H\textsubscript{5}O or 'C' of formula C\textsubscript{3}H\textsubscript{4}. 'B' on oxidation gave a compound of the formula C\textsubscript{3}H\textsubscript{5}O\textsubscript{2}. 'C' with dilute H\textsubscript{2}SO\textsubscript{4} containing Hg2+ ion gave 'D' of formula C\textsubscript{3}H\textsubscript{5}O, which with bromine and alkali gave the sodium salt of C\textsubscript{3}H\textsubscript{5}O\textsubscript{2}. Then 'A' is
(A) CH\textsubscript{3}CH\textsubscript{2}CHCl\textsubscript{2}
(B) CH\textsubscript{3}CCI\textsubscript{2}CH\textsubscript{3}
(C) CH\textsubscript{2}ClCH\textsubscript{2}CH\textsubscript{2}Cl
(D) CH\textsubscript{3}CHCICH\textsubscript{2}Cl

12. Isobutyl magnesium bromide with dry ether and absolute alcohol gives
(A) CH\textsubscript{3}CH\textsubscript{2}CH\textsubscript{2}OH and CH\textsubscript{3}CH\textsubscript{2}MgBr
(B) CH\textsubscript{3}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3} and Mg(OH)Br
(C) CH\textsubscript{3}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3} and CH\textsubscript{3}CH\textsubscript{2}OMgBr
(D) CH\textsubscript{3}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3} and Mg(OH)Br

13. Following reaction is
(A) E\textsubscript{1}
(B) S\textsubscript{N}\textsubscript{1}
(C) E\textsubscript{2}
(D) S\textsubscript{N}\textsubscript{2}

14. On treatment with chlorine in presence of sunlight, toluene gives the product -
(A) o-chloro toluene
(B) 2, 5-dichloro toluene
(C) p-chloro toluene
(D) Benzyl chloride

15. In S\textsubscript{N}\textsubscript{1} reaction an optically active substrates mainly gives:
(A) Retention in configuration
(B) Inversion in configuration
(C) Racemic product
(D) No product

16. Alkyl iodides can be prepared by :-
(A) RCH\textsubscript{2}COOAg + I\textsubscript{2} \xrightarrow{\text{CCI}_4?\Delta} RCH\textsubscript{2}I
(B) RCH\textsubscript{2}Cl + NaI \xrightarrow{\text{acetone?\Delta}} RCH\textsubscript{2}I + NaCl
(C) R-OH + HI \xrightarrow{} RI + H\textsubscript{2}O
(D) CH\textsubscript{4} + I\textsubscript{2} \xrightarrow{} CH\textsubscript{3}I
17. Which of the following reagents can be used to prepare an alkyl halide:–
(A) NaCl (B) HCl + ZnCl₂ (C) SOCl₂ (D) PCl₅

18. Which of the following reactions depict the nucleophilic substitution of C₂H₅Br:–
(A) C₂H₅Br + C₂H₅SNa → C₂H₅SC₂H₅ + NaBr
(B) C₂H₅Br → NaC₂H₅OH → C₂H₅ + HBr
(C) C₂H₅Br + AgCN → C₂H₅NC + AgBr
(D) C₂H₅Br + KOH → C₂H₅OH + KBr

19. For an S₇ reaction, which of the following statements are true:–
(A) The rate of reaction is independent of the concentration of the nucleophile
(B) The nucleophile attacks the C-atom on the side of the molecule opposite to the group being displaced
(C) The reaction proceeds with simultaneous bond formation and rupture
(D) None of these

20. Which of the following is an S₇ reaction:–
(A) CH₃CH₂Br + KOH → CH₃CH₂OH + KBr
(B) CH₃CH₂Br + CH₃CH₂ONa → CH₃CH₂OCH₂CH₃ + NaBr
(C) (CH₃)₃CBr + KOH → (CH₃)₃COH + KBr
(D) CH₃–CH₂–C–Br + KOH → CH₃CH₂–C–OH + KBr
TRUE OR FALSE:

1. Alkyl halides follow the reactivity sequence,
 \(R-I > R-Br > R-Cl > R-F \)
2. Vinyl chloride reacts with dilute \(\text{NaOH} \) to form vinyl alcohol.
3. Allyl chloride is more reactive than vinyl chloride.
4. Tertiary butyl bromide undergoes \(\text{S}_\text{N}1 \) reactions.
5. Both vic- and gem-dihalides on heating with zinc dust in presence of alcohol form same alkene.

FILL IN THE BLANKS:

1. The interaction of elemental sulphur with Grignard reagent gives
2. An alkyl halide may be converted into alcohol byreaction
3. Diethyl ether is obtained from ethyl bromide by treating it with and the name of the reaction is
4. Allyl chloride is a compound while vinyl chloride is inert towards nucleophilic substitution.
5. The dihalides in which halogen atoms are attached to adjacent carbon atoms are termed as
6. Alkyl halides are formed when thionyl chloride and are refluxed in presence of pyridine.
7. Ethylene chloride on hydrolysis with aq. KOH forms

MATCH THE COLUMN

1. Match the column I with column II.

<table>
<thead>
<tr>
<th>Column-I (reaction)</th>
<th>Column-II (Mechanism)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) (\text{CH}_3\text{C}H\text{OH} \text{Ph}^{(+)} + \text{SOCl}_2 \rightarrow \text{CH}_3\text{C}H\text{C}l \text{Ph}^{(+)})</td>
<td>(p) (\text{S}_\text{N}1)</td>
</tr>
<tr>
<td>(B) (\text{CH}_3\text{C}H\text{OH} \text{Ph}^{(+)} + \text{SOCl}_2 \xrightarrow{\text{Pyridine}} \text{CH}_3\text{C}H\text{C}l \text{H}_6\text{C}(-) \text{H})</td>
<td>(q) (\text{S}_\text{N}2)</td>
</tr>
<tr>
<td>(C) (\text{CH}_3\text{CHBr} + \text{OC}_2\text{H}_5/\text{EtOH} \rightarrow)</td>
<td>(r) (\text{S}_\text{N}1)</td>
</tr>
<tr>
<td>(D) (\text{CH}_3\text{C}H\text{OH} \text{H}_6\text{C}^{(+)} \text{H} + \text{HCl} \rightarrow \text{CH}_3\text{C}H\text{C}l \text{H}_6\text{C}^{(+)} \text{H})</td>
<td>(s) (\text{E}_2)</td>
</tr>
</tbody>
</table>

2. Match the column I with column II.

<table>
<thead>
<tr>
<th>Column-I (Substrate)</th>
<th>Column-II (Relative rate of solvolysis in 50% aqueous ethanol at 45 (\text{C}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) (\text{H}_2\text{C}) (\text{H}) (\text{H})</td>
<td>(p) 7700</td>
</tr>
<tr>
<td>(B) (\text{H}_2\text{C}) (\text{H}) (\text{H})</td>
<td>(q) 1</td>
</tr>
<tr>
<td>(C) (\text{H}_2\text{C}) (\text{H})</td>
<td>(r) 91</td>
</tr>
<tr>
<td>(D) (\text{H}_2\text{C}) (\text{H})</td>
<td>(s) 1,30,000</td>
</tr>
</tbody>
</table>
ASSERTION & REASON QUESTION:

These questions contains, Statement-I (assertion) and Statement-II (reason).
(A) Statement-I is True, Statement-II is True ; Statement-II is a correct explanation for Statement-I
(B) Statement-I is True, Statement-II is True ; Statement-II is NOT a correct explanation for Statement-I
(C) Statement-I is True, Statement-II is False.
(D) Statement-I is False, Statement-II is True.

1. **Statement-I**: Iodination of alkanes is carried out by heat in presence of reducting agent.
 Because
 Statement-II: Iodination of alkanes takes place explosively.

2. **Statement-I**: Chloropropane has higher boiling point than chloroethane.
 Because
 Statement-II: Haloalkanes are polar molecules.

3. **Statement-I**: Polar solvent slows down S_{N2} reaction.
 Because
 Statement-II: CH_3Br is less reactive than CH_3Cl.

4. **Statement-I**: Primary benzylic halides are more reactive than primary alkyl halides towards S_{N1} reaction.
 Because
 Statement-II: Reactivity depends upon the nature of the nucleophile and the solvent.

5. **Statement-I**: Vinylic halides are reactive towards nucleophilic substitution reaction.
 Because
 Statement-II: Reactivity is due to the polarity of carbon-halogen bond.

6. **Statement-I**: Aryl halides undergo electrophilic substitution less readily than benzene.
 Because
 Statement-II: Aryl halide gives only meta product w.r.t. electrophilic substitution.

7. **Statement-I**: Optically active 2-iodobutane on treatment with NaI in acetone undergoes racemisation.
 Because
 Statement-II: Repeated Walden inversions on the reactant and its product eventually gives a racemic mixture.

8. **Statement-I**: Free radical chlorination of n-butane gives 72% of 2-chlorobutane and 28% of 1-chlorobutane though it has six primary and four secondary hydrogens.
 Because
 Statement-II: A secondary hydrogen is abstracted more easily than the primary hydrogen.

9. **Statement-I**: Nucleophilic substitution reaction on an optically active alkyl halide gives a mixture of enantiomers.
 Because
 Statement-II: The reaction occurs by S_{N1} mechanism.

10. **Statement-I**: Boiling point of alkyl halide increases with increase in molecular weight.
 Because
 Statement-II: Boiling point of alkylhalides are in the order RI > RBr > RCI > RF.
COMPREHENSION BASED QUESTIONS:

Comprehension # 1

An organic compound A has molecular formula $C_{10}H_{17}Br$ and it is non-resolvable. A does not decolourize brown colour of bromine water solution. A on treatment with $(CH_3)_2COK/(CH_3)_3COH$ yields B as major product. B on treatment with H_2/Pt yields $(C_{10}H_{16})$ which on treatment with Cl_2/hv yields three monochloro derivative. Also B on boiling with acidic permanganate solution yields $C(C_{10}H_{16}O_3)$. C on heating with sodalime yields D $(C_9H_{16}O)$. D on reducing with LiAlH$_4$ followed by heating the product with concentrated H_2SO_4 yields E (C_9H_{16}) as major product. E on treatment with ozone followed by work-up with Zn–H$_2$O yields 6-Ketononanal.

1. Compound A is:

(A) ![Image A](image1.png)
(B) ![Image B](image2.png)
(C) ![Image C](image3.png)
(D) none of these

2. Compound B is:

(A) ![Image A](image1.png)
(B) ![Image B](image2.png)
(C) ![Image C](image3.png)
(D) ![Image D](image4.png)

3. Compound C is:

(A) ![Image A](image1.png)
(B) ![Image B](image2.png)
(C) ![Image C](image3.png)
(D) ![Image D](image4.png)

4. Compound D is:

(A) ![Image A](image1.png)
(B) ![Image B](image2.png)
(C) ![Image C](image3.png)
(D) ![Image D](image4.png)

Comprehension # 2

Nucleophilic substitution reactions generally expressed as

$$Nu^- + R – L \rightarrow R– Nu + L^-$$

Where Nu^- \rightarrow Nucleophile ; $R–L$ \rightarrow substrate ; L \rightarrow leaving group

The best leaving groups are those that become the most stable ions after they depart. Since most leaving groups leave as a negative ion, the best leaving groups are those ions that stabilize a negative charge most effectively. A good leaving group should be

(a) electron-withdrawing to polarize the carbon
(b) stable once it has left (not a strong base)
(c) polarisable- to maintain partial bonding with the carbon in the transition state (both S_N1 and S_N2). This bonding helps to stabilise the transition state and reduces the activation energy.
1. Among the following which is feasible?
 (A) $X^- + CH_3-CH_2-H \rightarrow CH_3-CH_2-X + H^-$
 (B) $X^- + CH_3-OH \rightarrow CH_3-X + OH^-$
 (C) $X^- + H_3C-OH \rightarrow CH_3-X + H_2O$
 (D) $X^- + CH_3-CH_3 \rightarrow CH_3-X + CH_3$

2. Among the following which is false statement?
 (A) The weaker the base after the group departs, the better the leaving group
 (B) A reactive leaving group would raise the energy of the product, driving the equilibrium towards the reactants
 (C) Relative leaving group ability may vary with change of solvent
 (D) Better leaving group only increases S_N^2 rate, not S_N1.

3. CH_3Br (i) CH_3F (ii) CH_3OH (iii) $\text{CH}_3\text{OSO}_2\text{CF}_3$ (iv)
 The correct order of decreasing reactivity of the above compounds towards CH_3O^- in an S_N2 reaction is:
 (A) I > IV > II > III (B) IV > I > II > III (C) IV > I > III > II (D) IV > II > I > III

4. Cl^- (i) CH_3O^- (ii) CH_3S^- (iii) I^- (iv)
 The correct order of increasing leaving group capability of above anions
 (A) III < IV < II < I (B) II < III < I < IV (C) II < IV < III < I (D) I < III < II < IV

Comprehension # 3

Nucleophilic aliphatic substitution reaction is mainly of two types: S_N1 and S_N2. The S_N1 mechanism is a two-step process. Reaction velocity of S_N1 reaction depends only on the concentration of the substrate. Since product formation takes place by the formation of carbocation, optically active substrate gives (+) and (–) forms of the product. In most of the cases, the product usually consists of 5-20% inverted product and 80-95% racemised species. The more stable the carbocation, the greater is the proportion of racemisation. In solvolysis reaction, the more nucleophilic the solvent, the greater is the proportion of inversion.

1. Which one of the following compound will give S_N1 reaction predominantly?
 (A) $\text{H}_3\text{C}_6-H-\text{Br}$ (B) $\text{H}_2\text{C}-\text{Br}$ (C) $\text{H}_3\text{C}-\text{Br}$ (D) All of these

2. Which of the following compounds will give S_N1 and S_N2 reactions with considerable rate?
 I. $\text{C}_6\text{H}_5-\text{CH}_2-\text{Br}$ II. $\text{CH}_2=\text{CH}-\text{CH}_2-\text{Br}$ III. $\text{CH}_3-\text{CH(Br)CH}_3$ IV. $\text{H}_3\text{C}-\text{Br}$
 Select the correct answer from the codes given below
 (A) I, II and III (B) I, II and IV (C) II, III and IV (D) I, III and IV
3. For the given reaction

\[
\begin{array}{c}
R_1 \overset{\text{HOH}}{\longrightarrow} R_1 \\
R_2 \quad R_2
\end{array}
\]

Which substrate will give maximum racemisation?

(A) \(\text{H}_5\text{C}_6 \text{Br} \)

(B) \(\text{Br} \text{H}_5\text{C}_6 \text{CH}_3 \)

(C) \(\text{H}_5\text{C}_6 \text{Br} \text{OCH}_3 \)

(D) \(\text{Br} \text{H}_5\text{C}_6 \text{NO}_2 \text{NH}_3 \)

MISCELLANEOUS TYPE QUESTION

<table>
<thead>
<tr>
<th>True / False</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. T</td>
</tr>
<tr>
<td>2. F</td>
</tr>
<tr>
<td>3. T</td>
</tr>
<tr>
<td>4. T</td>
</tr>
<tr>
<td>5. F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fill in the Blanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. thioalcohol</td>
</tr>
<tr>
<td>2. nucleophilic substitution</td>
</tr>
<tr>
<td>3. sodium ethoxide, williamson's synthesis</td>
</tr>
<tr>
<td>4. reactive</td>
</tr>
<tr>
<td>5. vic-dihalides or alkylene halides</td>
</tr>
<tr>
<td>6. alcohols</td>
</tr>
<tr>
<td>7. glycol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Match the Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (A) (\rightarrow r); (B) (\rightarrow q); (C) (\rightarrow s); (D) (\rightarrow p)</td>
</tr>
<tr>
<td>2. (A) (\rightarrow q); (B) (\rightarrow r); (C) (\rightarrow s); (D) (\rightarrow p)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assertion - Reason Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. D</td>
</tr>
<tr>
<td>2. B</td>
</tr>
<tr>
<td>3. C</td>
</tr>
<tr>
<td>4. B</td>
</tr>
<tr>
<td>5. D</td>
</tr>
<tr>
<td>6. C</td>
</tr>
<tr>
<td>7. A</td>
</tr>
<tr>
<td>8. A</td>
</tr>
<tr>
<td>9. A</td>
</tr>
<tr>
<td>10. B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comprehension Based Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehension #1: 1. (A)</td>
</tr>
<tr>
<td>2. (C)</td>
</tr>
<tr>
<td>3. (A)</td>
</tr>
<tr>
<td>4. (C)</td>
</tr>
<tr>
<td>Comprehension #2: 1. (C)</td>
</tr>
<tr>
<td>2. (D)</td>
</tr>
<tr>
<td>3. (B)</td>
</tr>
<tr>
<td>4. (B)</td>
</tr>
<tr>
<td>Comprehension #3: 1. (A)</td>
</tr>
<tr>
<td>2. (A)</td>
</tr>
<tr>
<td>3. (C)</td>
</tr>
</tbody>
</table>
1. Arrange the following compounds in order of:
Decreasing S_n1 reaction rate:

2. Select the member of each pair that shows faster rate of S_n2 reaction with KI in acetone.

(a) $\text{CH}_3\text{CH} = \text{CH} \text{CH} = \text{CH} \text{Cl}$ and $\text{CH}_3\text{CH} = \text{CH} \text{CH} = \text{CH} \text{Cl}$

(b) $\text{CH}_3\text{CH} = \text{CH} \text{CH} = \text{CH} \text{Cl}$ and $\text{CH}_3\text{CH} = \text{CH} \text{CH} = \text{CH} \text{Br}$

(c) $\text{CH}_3\text{CH} = \text{CH} \text{CH} = \text{CH} \text{Cl}$ and $\text{CH}_3\text{CH} = \text{CH} \text{CH} = \text{CH} \text{Cl}$

(d) $\text{CH}_3\text{CH} = \text{CH} \text{CH} = \text{CH} \text{Cl}$ and $\text{CH}_3\text{CH} = \text{CH} \text{CH} = \text{CH} \text{Br}$

3. Of the following statements which are true for S_n1 reaction.
(a) Tertiary alkyl halides react faster than secondary.
(b) The absolute configuration of the product is opposite to that of the reactant when an optical active substrate is used.
(c) The reaction shows first order kinetics.
(d) The rate of reaction depends markedly on the nucleophilicity of the nucleophile.
(e) The mechanism is two step.
(f) Carbocations are intermediate.
(g) Rate \propto [Alkyl halides]
(h) The rate of the reaction depends on the nature of the leaving group.

4. Of the following statements, which are true for S_n2 reaction.
(a) Tertiary alkyl halides reacts faster than secondary.
(b) The absolute configuration of product is opposite to that of the reactant when an optically active substrate is used.
(c) The reaction shows first order kinetics.
(d) The rate of the reaction depends markedly on the nucleophilicity of the attacking reagent.
(e) The mechanism is one step.
Carbocations are intermediate.

Rate \propto [Alkyl halides]

The rate of the reaction depends on the nature of the leaving group.

5.
Arrange the isomers of molecular formula C$_4$H$_9$Cl in order of decreasing rate of reaction with sodium iodide in acetone.

6.
There is an overall 29-fold difference in reactivity of 1-chlorohexane, 2-chlorohexane towards potassium iodide in acetone. Which one is the most reactive? why?

7.
Identify the product when A reacts with

\[
\begin{align*}
\text{(A)}
\end{align*}
\]

(a) Br$_2$/Fe
(b) Br$_2$/CCl$_4$
(c) NBS
(d) HBr

8.
Identify major product in the following:

\[
\text{ClCH}_2\text{CHCl}_2 \xrightarrow{\text{OH}^-} \text{CH}_2=\text{CCl}_2
\]

(a) CH$_3$CHCH$_2$CH$_3$ \(\xrightarrow{\text{BrO}^-}\)
(b) CH$_3$CH$_2$CH$_2$CH$_2$Br \(\xrightarrow{\text{BrO}^-}\)
(c) \[
\begin{align*}
\text{CH}_3
\end{align*}
\] \(\xrightarrow{\text{BrO}^-}\)
(d) \[
\begin{align*}
\text{CH}_3
\end{align*}
\] \(\xrightarrow{\text{BrO}^-}\)

9.
Which is faster in the following pairs of halogen compounds undergoing S$_\text{N}$2 reactions?

(a) \[
\begin{align*}
\text{Cl}
\end{align*}
\] and \[
\begin{align*}
\text{Cl}
\end{align*}
\]
(b) \[
\begin{align*}
\text{Cl}
\end{align*}
\] and \[
\begin{align*}
\text{Cl}
\end{align*}
\]
(c) \[
\begin{align*}
\text{Cl}
\end{align*}
\] and \[
\begin{align*}
\text{Cl}
\end{align*}
\]
(d) \[
\begin{align*}
\text{Cl}
\end{align*}
\] and \[
\begin{align*}
\text{Cl}
\end{align*}
\]

10.
R – Mg – Br (A) on reaction with H$_2$O forms a gas (B), which occupied 1.4 L/g at NTP. What is product when R – Br reacts with benzene in presence of AlCl$_3$?
1. IV > I > II > III
2. (a) I (b) II (c) I (d) I
3. (a) T (b) F (c) T (d) F (e) T (f) T (g) T (h) T
4. (a) F (b) T (c) F (d) T (e) T (f) F (g) F (h) T
5. 1 > 2 > 3 Anion of acetic acid is more stabilised by resonance than phenoxide ion.
6. 1-chlorohexane
 Because it follows Sn2 path.
7. (a)
 (b)
 (c)
 (d)
 (1, 2-H- shift gives more stable benzylic carbocation)
8. (a) CH\textsubscript{3}CH = CHCH\textsubscript{3} (b) CH\textsubscript{2}CH = CHCH\textsubscript{3} (c)
 (d)
 (e)
9. Ease of backside attack (less steric hindrance) decides which undergoes S\textsubscript{n}2 faster (except in (b) in which iodide is better leaving group). In all cases first one is faster than the other for S\textsubscript{n}2 reaction.
10. Gas B is CH\textsubscript{4}, hence A is CH\textsubscript{3}MgBr. CH\textsubscript{3}Br forms on reaction with benzene.
1. Explain the following observations:
(a) Azide ion (N$_3^-$) react with 2-bromopentane thousand times faster than with neopentyl bromide in a S_N2 reaction though former is a secondary halide while latter is primary.
(b) What will happen to the stereochemistry of product of the following reaction:

(c) What will happen to the rate if the concentration of alkyl bromide in (b) is doubled?
(d) What will happen to the rate if the concentration of azide ion in (b) is doubled?
(e) How the sign of optical rotation of reactant and product are related in (b)
(f) When allowed to stand in dilute H$_2$SO$_4$, laevo-rotatory 2-butanol slowly loses optical activity.

2. Provide structure of major product in the following reaction indicating stereochemistry where appropriate:

3. Propose mechanism of the following reactions:

4. Which of the following alkyl halide could be successfully used to synthesize Grignard reagent and why other fail?
(i)
(ii)
(iii)
(iv)
5. An alkyl bromide A has molecular formula C₈Hₑ₇Br and four different structures can be drawn for it, all optically active. A on refluxing with ethanolic KOH solution yields only one elimination product B(C₈H₁₆) which is still enantiomeric. B on treatment with H₂/Pt yields C(C₈H₁₈) which does not rotate the plane polarized light, B on ozonolysis followed by work-up with H₂O₂ yields D(C₇H₁₄O) as one product which is still resolvable. Deduce structures of A to D.

6. Identify A to G in the following.

(a) \[
\begin{align*}
\text{Br} \quad &\text{CCl}_2 \quad &\text{A} &\text{KCN} &\text{B} &\text{H}_2\text{O} &\text{C} \\
\end{align*}
\]
(b) \[
\begin{align*}
\text{Br} \quad &\text{CCl}_2 \quad &\text{D} &\text{KCN} &\text{E} &\text{H}_2\text{O} &\text{G} \\
\end{align*}
\]

7. \[
\begin{align*}
\text{Br} \quad &\text{Cl} &\text{(A)} &\text{Mg/ether} &\text{B} &\text{D}_2\text{O} &\text{Na/ether} &\text{C} &\text{HCHO/H}_2\text{O} &\text{D} \\
\text{Na/ether} &\text{(with two mol of A)} &\text{F} \\
\end{align*}
\]
Identify B to F

8. Vinyl chloride does not give Sₙ reaction but allyl chloride gives. Explain.

9. Arrange the following in the increasing order of their ability as a leaving group:
(a) CH₃S⁻, CH₃O⁻, CF₃⁻ and F⁻
(b) CF₃SO₃⁻, CH₃SO₃⁻ and CH₃COO⁻

10. RBr when treated with AgCN in a highly polar solvent gives RNC whereas when it is treated with NaCN it gives RCN. Explain.
1. (a) Though neopentylbromide is primary, bulky tertiary butyl group possess very large steric hindrance to the attack of bulky nucleophile N_3^-.

(b) $\text{H-CH}_3^+ N_3^- S_2 \rightarrow \text{CH}_3 D$

(c) Rate will double
(d) Rate will double
(e) not related
(f) Recemization occur through carbocation intermediate

2. (a)
(b) $\text{H}\text{C-CH}_3 + \text{CN}^-$

3. (a) $\text{Cl}^- + \text{OCH}_3 \rightarrow \text{Cl}$
(b) $\text{Br}^- + \text{OCH}_3 \rightarrow \text{Br}^- \text{OCH}_3$

(c)

4. Only II can be used for successful synthesis of Grignard reagent, rest all contain acidic proton and will react with R' (from Grignard reagent) forming alkane.

5.

6. (A)
(B)
(decarboxylation takes place on heating when there is a keto group at β-position)

7. In Vinyl chloride, C – Cl bond is stable due to resonance (as in chlorobenzene)

\[
\begin{align*}
\text{CH}_2&\text{CHCH}_2\text{Cl} & \text{CH}_2&\text{CHCH}_2^+\text{Cl} \\
&\text{Allyl carbocation}
\end{align*}
\]

Hence S\textsubscript{N} reaction in which Cl is replaced by nucleophile is not possible. In addition to this, sp2 hybridised carbon is more acidic than sp3 carbon, hence removal of proton (H+) is easier than removal of halide (Cl–). In allyl chloride, S\textsubscript{N} reaction is easier since allyl carbocation formed after removal of Cl– is stabilised by resonance.

9. (a) CF\textsubscript{3} – < CH\textsubscript{3}O– < CH\textsubscript{3}S–; (b) CH\textsubscript{3}COO– < CH\textsubscript{3}SO\textsubscript{3}– < CF\textsubscript{3}SO\textsubscript{3}–

10. As [CN]– is an ambident nucleophile which have two nucleophile which have two nucleophilic sites and can attack from either side. In a highly polar solvent, AgCN promotes the formation of carbocation R+, precipitation of AgBr.

\[
\begin{align*}
\text{R–Br} + \text{Ag}^+ [\text{CN}^-] & \overset{\text{slow}}{\underset{\text{fast}}{\rightleftharpoons}} \text{R}^+ + \text{CN}^- + \text{AgBr} \quad \text{AgBr} \downarrow \quad \text{R–N}^+ \equiv \text{C}^–
\end{align*}
\]

In the absence of such promotion by Ag+, with Na+[CN]–, the resulting S\textsubscript{N}\textsubscript{2} reaction is found to proceed with preferential attack on the atom in the nucleophile which is more polarisable i.e. C.

\[
\begin{align*}
\text{NC}^-+\text{R} – \text{Br} & \quad \rightarrow \text{[NC}δ–...\text{R}...\text{Br}δ–] \quad \rightarrow \text{N} \cong \text{C} – \text{R} + \text{Br}^–
\end{align*}
\]
1. Chlorination of toluene in the presence of light and heat followed by treatment with aqueous NaOH gives-
 (A) o-cresol (B) p-cresol [IIT-90]
 (C) 2, 4 dihydroxytoluene (D) Benzoic acid

2. Aryl halides are less reactive towards nucleophilic substitution reaction as compared to alkyl halides due to-
 (A) The formation of less stable carbonium ion (B) Resonance stabilization [IIT-90]
 (C) The inductive effect (D) sp² hybridised carbon attached to the halogen

3. 1-Chlorobutane on reaction with alcoholic potash gives - [IIT-91]
 (A) 1–butene (B) 1–butanol (C) 2–butene (D) 2–butanol

4. In the addition of HBr to propene in the absence of peroxides, the first step involves the addition of -
 (A) H⁺ (B) Br⁻ (C) H⁺ (D) Br⁺ [IIT-93]

5. Arrange the following compounds in order of increasing dipole moment : [IIT-96]
 (I) Toluene ; (II) m-dichlorobenzene ; (III) o-dichlorobenzene ; (IV) p-dichlorobenzene
 (A) I < IV < II < III (B) IV < I < II < III (C) I < IV < II < III (D) IV < II < I < III

6. In the reaction of p-chloro toluene with KNH₂ in liq. NH₃, the major product is - [IIT-97]
 (A) o-toluidine (B) m-toluidine (C) m-chloroaniline (D) p-chloroaniline

7. (CH₃)₃CMgCl reaction with D₂O produces : [IIT-97]
 (A) (CH₃)₃CD (B) (CH₃)₃OD (C) (CD₃)₃CD (D) (CH₃)₃OD

8. The intermediate during the addition of HCl to propene in presence of peroxide is - [IIT-97]
 (A) CH₂CH₂CH₂Cl (B) CH₂CH₂CH₂⁺ (C) CH₃CH₂CH₂⁺ (D) CH₃CH₂⁺

9. The number of possible enantiomeric pairs that can be produced during monochlorination of isopentane-
 (A) 2 (B) 3 (C) 4 (D) 1 [IIT-97]

10. During debromination of meso-2,3-dibromobutane, with Zn dust/CH₃COOH the major compound formed is - [IIT-97]
 (A) n-butane (B) 1-butene (C) cis-2-butene (D) trans-2-butene

11. Benzyl chloride (C₆H₅CH₂Cl) can be prepared from toluene by chlorination with [IIT-98]
 (A) SO₂Cl₂ (B) SOCl₂ (C) PCl₅ (D) NaOCl

12. Toluene, when treated with Br₂/Fe, gives o and p-bromotoluene, because the CH₃ group -
 (A) is ortho and para directing (B) is meta directing [IIT-99]
 (C) deactivates the ring by hyperconjugation (D) deactivates the ring

13. A solution of (+) 2-chloro-2phenylethane in toluene racemises slowly in the presence of small amount of SbCl₅ due to the formation of - [IIT-99]
 (A) Carbanion (B) Carbene (C) Free-radical (D) Carbocation

14. The order of reactivity of the following alkyl halides for a S_N₂ reaction is - [IIT-2000]
 (A) RF > RCl > R –Br > R–I (B) R–F > R –Br > R–Cl > R–I
 (C) R–Cl > R –Br > R–F > R–I (D) R–I > R –Br > R–Cl > R–F

15. Which of the following has the highest nucleophilicity : [IIT-2000]
 (A) F⁻ (B) OH⁻ (C) CH₃⁻ (D) NH₂⁻

16. An S_N₂ reaction at an asymmetric carbon of a compound always gives :
 (A) an enantiomer of the substrate (B) a product with opposite optical rotation
 (C) a mixture of diastereomers (D) a single stereoisomer [IIT-2001]
17. The number of isomer for the compound with molecular formula C₂BrClFl is - [IIT-01]
 (A) 3 (B) 4 (C) 5 (D) 6

18. In the presence of peroxide, hydrogen chloride and hydrogen iodide do not give anti-Markovnikov's addition to alkenes because:
 (A) both are highly ionic
 (B) one is oxidising and the other is reducing
 (C) one of the steps in endothermic in both the cases
 (D) all the steps are exothermic in both the reactions

19. Identify the set of reagents/reaction conditions 'X' and 'Y' in the following set of transformations - [IIT-02]

\[
\text{CH}_3\text{CH}_2\text{CH}_2\text{Br} \xrightarrow{X} \text{Product} \xrightarrow{Y} \text{CH}_3\text{CH}==\text{CH}_3
\]

 (A) X = dilute aqueous NaOH, 20°C, Y = HBr/acetic acid, 20°C
 (B) X = concentrated alcoholic NaOH, 80°C; Y = HBr/acetic acid, 20°C
 (C) X = dilute aqueous NaOH 20°C, Y = Br₂/CHCl₃, 0°C
 (D) X = concentrated alcoholic NaOH, 80°C; Y = Br₂/CHCl₃, 0°C

20. \[
\text{F}\text{-}\text{C}_6\text{H}_4\text{NO}_2 \xrightarrow{\text{(CH}_3\text{)}_2\text{NH}} \xrightarrow{\text{DMF}} \xrightarrow{\text{A}} \xrightarrow{\text{(i) NaNO}_2 + \text{HCl 0–5°C}} \xrightarrow{\text{(ii) H}_2/\text{Catalytic Reduction}} \text{B}
\]

 (A) O₂N-\text{C}_6\text{H}_4-\text{NH}_2
 (B) H₂C\text{N}-\text{C}_6\text{H}_4-\text{NH}_2
 (C) H₂C\text{N}-\text{NO}_2\text{C}_6\text{H}_4-\text{NH}_2
 (D) H₂C\text{N}-\text{NO}_2\text{C}_6\text{H}_4-\text{NH}_2

21. MeO-\text{C}_6\text{H}_4\text{CH}_3\text{H} on hydrolysis in presence of acetone:

 (K) MeO-\text{C}_6\text{H}_4\text{NO}_2
 (L) MeO-\text{C}_6\text{H}_4\text{OH}\text{CH}_3\text{H}
 (M) MeO-\text{C}_6\text{H}_4\text{CH}_3\text{H}

 (A) K & L (B) only L (C) M only (D) K & M
22. The reagent (s) for the following conversion:

\[
\begin{array}{c}
\text{Br} \\
\begin{array}{c}
\text{Br} \\
\end{array}
\end{array} \rightarrow \begin{array}{c}
\text{H} \\
\text{C} \\
\end{array} \begin{array}{c}
\text{H} \\
\text{C} \\
\end{array} \text{ is /are -}\end{array}
\]

(A) alcoholic KOH
(B) Alcoholic KOH followed by NaNH₂
(C) aqueous KOH followed by NaNH₂
(D) Zn/CH₃OH

23. In the following groups:

(I) –OAc ; (II) –OMe ; (III) –OSO₂Me ; (IV) OSO₂CF₃

the order of leaving group ability is -

(A) I > II > III > IV
(B) IV > III > I > II
(C) III > II > I > IV
(D) II > III > IV > I

24. \(\text{CH}_3\text{CH}_2\text{CHCl}_2 \xrightarrow{\text{Aq. KOH}} ? \)

25. Draw the stereochemical structure of the products in the following reaction.

26. Give reasons:

(a) (i) \(\text{Br} \xrightarrow{\text{C}_2\text{H}_5\text{OH(saq.)}} \text{acidic solution} \); (ii) \(\text{Br} \xrightarrow{\text{C}_2\text{H}_5\text{OH(saq.)}} \text{neutral} \)

(b) (i) \(\text{F} \xrightarrow{\text{NaOH(saq.)}} \text{F}^-(\text{liberated}) \); (ii) \(\text{F} \xrightarrow{\text{NaOH(saq.)}} \text{F}^- \text{is not liberated} \)

27. An alkyl halide, \(\text{(A)} \) of formula \(\text{C}_6\text{H}_{11}\text{Cl} \) on treatment with potassium tertiary butoxide gives two isomeric alkenes \(\text{(B)} \) and \(\text{(C)} \) \(\text{C}_6\text{H}_{10} \). Both alkenes on hydrogenation give methycyclopentane. Predict the structure of \(\text{(A)}, \text{(B)} \) and \(\text{(C)} \).

28. Which would be the major product in each of the following reactions?

(a) \(\text{H}_3\text{C} \xrightarrow{\text{C}_2\text{H}_5\text{OH}} \)

(b) \(\text{F} \xrightarrow{\text{NaOCH}_3} \)

(c) \(\text{base} \)
29. The following compound on hydrolysis in aqueous acetone will give:

- [IIT 2005]

It mainly gives
(A) K and L (B) Only K (C) L and M (D) Only M

30. Match the following:

<table>
<thead>
<tr>
<th>Column I</th>
<th>Column II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) CH₃–CHBr–CD₃ on treatment with alc. KOH gives CH₂=CH-CD₂ as a major product.</td>
<td>(P) E₁ reaction</td>
</tr>
<tr>
<td>(B) Ph – CHBr - CH₃ reacts faster than Ph-CHBr-CD₂⁻.</td>
<td>(Q) E₂ reaction</td>
</tr>
<tr>
<td>(C) Ph-CD₂CH₂Br on treatment with C₂H₅OD/C₂H₅O⁻ gives Ph-CD=CH₂ as the major product.</td>
<td>(R) E₁cb reaction</td>
</tr>
<tr>
<td>(D) PhCH₂CH₂Br and PhCD₂CH₂Br react with same rate.</td>
<td>(S) First order reaction</td>
</tr>
</tbody>
</table>

31. The major product of the following reaction is

- [IIT 2008]
32. In the reaction \[\text{OCH}_3 \text{Br} \xrightarrow{\text{HBr}} \] the products are

(A) Br\text{OCH}_3 \text{ and H}_2 \quad (B) \text{Br} \text{ and CH}_3\text{Br} \\
(C) \text{Br} \text{ and CH}_2\text{OH} \quad (D) \text{OH} \text{ and CH}_3\text{Br}

33. The total number of alkenes possible by dehydrobromination of 3-bromo-3-cyclopentylhexane using alcoholic KOH is

34. KI in acetone, undergoes S\text{N}_2 reaction with each of P, Q, R and S. The rates of the reaction vary as -

35. Match the chemical conversions in List-I with the appropriate reagents in List-II and select the correct answer using the code given below this lists -

List-I

(P) \[\text{Cl} \xrightarrow{\text{Hg(OAc)}_2, \text{NaBH}_4} \]

(Q) \[\text{ONa} \xrightarrow{\text{Et-OEt}} \]

(R) \[\text{Cyclopentane} \xrightarrow{\text{Et-Br}} \]

(S) \[\text{Cyclopentene} \xrightarrow{\text{BH}_3, \text{H}_2\text{O}_2, \text{NaOH}} \]

List-II

(1) (i) Hg(OAc)_2 \quad (ii) NaBH_4 \\
(2) \quad \text{NaOEt} \\
(3) \quad \text{Et-Br} \\
(4) (i) BH_3 \quad (ii) H_2O_2 / \text{NaOH}

Codes:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>(B)</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>(C)</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(D)</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
1. (D) 2. (B) 3. (A) 4. (A) 5. (B) 6. (D) 7. (A) 8. (B)
9. (A) 10. (C) 11. (A) 12. (A) 13. (D) 14. (D) 15. (C) 16. (D)
17. (D) 18. (C) 19. (B) 20. (B) 21. (A) 22. (B) 23. (B)
24. CH₃—CH₂—CHO

25.

26. (a) (i) Products are \(\text{C}_6\text{H}_5-\text{CH}_2-\text{CO}_2\text{H} \) + HBr (aq.) ; Hence acidic.

(ii) No reaction takes place, as aryl halide is inert to nucleophilic substitution.

(b) (i) −NO₂ group facilitates the nucleophilic attack because it stabilised the anion formed when attack of OH takes place.

(ii) Does not show reaction.

27. (B) (A) (C)

28. (a) (b) (c)

34. B 35. A